Transum Software

Volume

Use formulae to solve problems involving the volumes of cuboids, prisms and other common solids.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Exam-Style Description Help More...

This is level 5; find the volumes of composite solid objects. You can earn a trophy if you get at least 7 questions correct and you do this activity online.

1. Composite 3DShapeFind the volume of this prism with dimensions:
Maximum height = 17cm
Minimum height = 12cm
length = 15cm
Width = 5cm
Top step length = 6cm

cm3 Correct Wrong

2. Composite 3DShapeA three dimensional, asymetrical letter T is made up of two cuboids both 6cm wide. Calculate the volume of the shape.

cm3 Correct Wrong

3. Composite 3DShapeA beach hut is in the shape of a triangular prism on a cuboid. Find the volume of the hut from the measurements given on the diagram. Give your answer to the nearest cubic metre.

m3 Correct Wrong

4. Composite 3DShapeUse the information in the diagram of the wire frame model to calculate its volume to the nearest cubic metre.

m3 Correct Wrong

5. Composite 3DShapeThe model of a building to house a telescope is in the shape of a hemisphere on a cylinder. Calculate the volume of the model to the nearest cubic centimetre.

cm3 Correct Wrong

6. Composite 3DShapeAn obelisc is made up of a cone on a cylinder as shown in the diagram. Calculate its volume to the nearest cubic metre.

m3 Correct Wrong

7. A hollow brass cone has an outer radius of 60cm and an inner radius of 50cm. The outer height is 90cm and the inner height is 70cm. Find the volume of brass in the cone to the nearest cubic centimetre.

cm3 Correct Wrong

8. Twenty ball bearings each with a radius of 5cm are melted down and cast into a cuboid of lenght 20cm and width 40cm. What is the height of this cuboid to the nearest centimetre?

cm Correct Wrong

9. A hemisphere and a cone are joined at their identical 8.8cm radius circular bases. The length of the composite solid as measured from the apex of the cone is 19.5cm. Find the volume of the solid in cubic centimetres to the nearest cubic centimetre.

cm3 Correct Wrong

10. A circular hole of diameter 7mm is drilled through a cuboid of dimensions 10mm by 12 mm by 14mm. The hole starts at the centre of one of the faces of the cuboid and goes through to the centre of the opposite face. What is the maximum possible volume of wood remaining after the hole has been drilled? Give your answer in cubic millimetres to three significant figures.

mm3 Correct Wrong
Check

This is Volume level 5. You can also try:
Level 1 Level 2 Level 3 Level 4 Level 6

Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

Transum.org

This web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available.

Please contact me if you have any suggestions or questions.

Email address

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician?

Comment recorded on the 17 November 'Starter of the Day' page by Amy Thay, Coventry:

"Thank you so much for your wonderful site. I have so much material to use in class and inspire me to try something a little different more often. I am going to show my maths department your website and encourage them to use it too. How lovely that you have compiled such a great resource to help teachers and pupils.
Thanks again"

Comment recorded on the 12 July 'Starter of the Day' page by Miss J Key, Farlingaye High School, Suffolk:

"Thanks very much for this one. We developed it into a whole lesson and I borrowed some hats from the drama department to add to the fun!"

Featured Activity

Number Crunch Saga

Number Crunch Saga

A lively numeracy game requiring you to align three numbers to create the given target sum or product. There are five levels to this online game and a virtual Transum Trophy available for each level.

Answers

There are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer.

A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves.

Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members.

If you would like to enjoy ad-free access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now:

Subscribe

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school.

Maths Map

Are you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic.

Teachers

If you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows:

Dan Walker, Twitter

Thursday, January 31, 2019

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2019 WWW.TRANSUM.ORG

© Transum Mathematics :: This activity can be found online at:
www.Transum.org/go/?Num=263

Description of Levels

Close

Close

Level 1 - A basic exercise to find the number of cubes required to make the cuboid shown in the diagram

Level 2 - Use the width times height times length formula to find the volume of cuboids

Level 3 - Find the volumes of a wide range of prisms (including cylinders)

Level 4 - Find the volumes of pyramids, cones, spheres and other common solid shapes

Level 5 - Find the volumes of composite solid objects

Level 6 - Find the volumes of solid objects where the units of the dimensions may differ

Surface Area - Exercises on finding the surface area of solids

Cylinders - Apply formulae for the volumes and surface areas of cylinders

Exam Style Questions - A collection of problems in the style of GCSE or IB/A-level exam paper questions (worked solutions are available for Transum subscribers).

More on this topic including lesson Starters, visual aids, investigations and self-marking exercises.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Curriculum Reference

See the National Curriculum page for links to related online activities and resources.

Volume Formulas

Cube: \(s^3\) where \(s\) is the length of one edge.

Cuboid: \(l\times w\times h\) where \(l\) is the length, \(w\) is the width and \(h\) is the height of the cuboid.

Cylinder: \(h \times \pi r^2\) where \(h\) is the height (or length) of the cylinder and \(r\) is the radius of the circular end.

Cone: \(h \times \frac13 \pi r^2\) where \(h\) is the height of the cone and \(r\) is the radius of the circular base.

Square based pyramid: \(h \times \frac13 s^2\) where \(h\) is the height of the pyramid and s is the length of a side of the square base.

Sphere: \(\frac43 \pi r^3\) where \(r\) is the radius of the sphere.

Prism: Area of the cross section multiplied by the length of the prism.

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly.

Close

Close

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly. You can double-click the 'Check' button to make it float at the bottom of your screen.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Close

Close