VolumeUse formulae to solve problems involving the volumes of cuboids, prisms and other common solids. 
This is level 5; find the volumes of composite solid objects. You can earn a trophy if you get at least 7 questions correct and you do this activity online.
InstructionsTry your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help. When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file. 



Transum.orgThis web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available. Please contact me if you have any suggestions or questions. 
More Activities: 

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician? Comment recorded on the 25 June 'Starter of the Day' page by Inger.kisby@herts and essex.herts.sch.uk, : "We all love your starters. It is so good to have such a collection. We use them for all age groups and abilities. Have particularly enjoyed KIM's game, as we have not used that for Mathematics before. Keep up the good work and thank you very much Comment recorded on the 19 October 'Starter of the Day' page by E Pollard, Huddersfield: "I used this with my bottom set in year 9. To engage them I used their name and favorite football team (or pop group) instead of the school name. For homework, I asked each student to find a definition for the key words they had been given (once they had fun trying to guess the answer) and they presented their findings to the rest of the class the following day. They felt really special because the key words came from their own personal information." 
Each month a newsletter is published containing details of the new additions to the Transum website and a new puzzle of the month. The newsletter is then duplicated as a podcast which is available on the major delivery networks. You can listen to the podcast while you are commuting, exercising or relaxing. Transum breaking news is available on Twitter @Transum and if that's not enough there is also a Transum Facebook page. 

AnswersThere are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer. A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves. Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members. If you would like to enjoy adfree access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now: Subscribe 

Go MathsLearning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school. Maths MapAre you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic. TeachersIf you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows: 

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments. 
© Transum Mathematics :: This activity can be found online at:
www.Transum.org/go/?Num=263
Close
Level 1  A basic exercise to find the number of cubes required to make the cuboid shown in the diagram
Level 2  Use the width times height times length formula to find the volume of cuboids
Level 3  Find the volumes of a wide range of prisms (including cylinders)
Level 4  Find the volumes of pyramids, cones, spheres and other common solid shapes
Level 5  Find the volumes of composite solid objects
Level 6  Find the volumes of solid objects where the units of the dimensions may differ
Surface Area  Exercises on finding the surface area of solids
Cylinders  Apply formulae for the volumes and surface areas of cylinders
Exam Style Questions  A collection of problems in the style of GCSE or IB/Alevel exam paper questions (worked solutions are available for Transum subscribers).
More on this topic including lesson Starters, visual aids, investigations and selfmarking exercises.
Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.
See the National Curriculum page for links to related online activities and resources.
Cube: \(s^3\) where \(s\) is the length of one edge.
Cuboid: \(l\times w\times h\) where \(l\) is the length, \(w\) is the width and \(h\) is the height of the cuboid.
Cylinder: \(h \times \pi r^2\) where \(h\) is the height (or length) of the cylinder and \(r\) is the radius of the circular end.
Cone: \(h \times \frac13 \pi r^2\) where \(h\) is the height of the cone and \(r\) is the radius of the circular base.
Square based pyramid: \(h \times \frac13 s^2\) where \(h\) is the height of the pyramid and s is the length of a side of the square base.
Sphere: \(\frac43 \pi r^3\) where \(r\) is the radius of the sphere.
Prism: Area of the cross section multiplied by the length of the prism.
Close
Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly. You can doubleclick the 'Check' button to make it float at the bottom of your screen.
Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.
Close
Dan Walker, Twitter
Thursday, January 31, 2019