Arrange the given statements involving indices to show whether they are true or false.
\( \frac{x^3 + x^2}{x} \equiv x^2 + x\)
\( 2^{4} \equiv 16 \)
\( \frac{x^4}{x^8} \equiv x^{4}\)
\( 3^{3} \equiv 9\)
\( \frac{1}{x^{1}} \equiv x \)
\( x^0 \equiv 0\)
\( \frac{1}{x^5} \equiv x^{5} \)
\(x^3 + x^5 \equiv x^8\)
Your answer is not correct. Try again.
This is Laws of Indices  True or False? level 2. You can also try:
Level 1
Level 3
Level 4
There are also a set of printable cards for an offline version.


Transum.orgThis web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available. Please contact me if you have any suggestions or questions. 
More Activities: 

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician? Comment recorded on the 24 May 'Starter of the Day' page by Ruth Seward, Hagley Park Sports College: "Find the starters wonderful; students enjoy them and often want to use the idea generated by the starter in other parts of the lesson. Keep up the good work" Comment recorded on the 19 November 'Starter of the Day' page by Lesley Sewell, Ysgol Aberconwy, Wales: "A Maths colleague introduced me to your web site and I love to use it. The questions are so varied I can use them with all of my classes, I even let year 13 have a go at some of them. I like being able to access the whole month so I can use favourites with classes I see at different times of the week. Thanks." 


Numeracy"Numeracy is a proficiency which is developed mainly in Mathematics but also in other subjects. It is more than an ability to do basic arithmetic. It involves developing confidence and competence with numbers and measures. It requires understanding of the number system, a repertoire of mathematical techniques, and an inclination and ability to solve quantitative or spatial problems in a range of contexts. Numeracy also demands understanding of the ways in which data are gathered by counting and measuring, and presented in graphs, diagrams, charts and tables." Secondary National Strategy, Mathematics at key stage 3 

Go MathsLearning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths main page links to more activities designed for students in upper Secondary/High school. TeachersIf you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows: 

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments. 
Close
Level 1  The basic laws of indices
Level 2  More complex statements including negative indices
Level 3  More complex statements including fractional indices
Level 4  Mixed puzzling statements for the expert
Cards  There are also a set of printable cards for an offline version of this activity.
Game  The Indices Pairs game with three levels of difficulty.
Exam Style questions are in the style of GCSE or IB/Alevel exam paper questions and worked solutions are available for Transum subscribers.
More on this topic including lesson Starters, visual aids and investigations.
Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.
See the National Curriculum page for links to related online activities and resources.
\( 5^a \times 5^b \equiv 5^{a+b} \) \( 5^a \div 5^b \equiv 5^{ab} \) \( (5^a)^b \equiv 5^{ab} \) 
\( 5^1 \equiv 5 \) \( 5^0 \equiv 1 \) \( 5^{1} \equiv \frac15 \) \( 5^{2} \equiv \frac{1}{25} \) 
\( 5^{\frac12} \equiv \sqrt{5} \) \( 5^{\frac13} \equiv \sqrt[3]{5} \) \( 5^{\frac23} \equiv \sqrt[3]{5^2} \) 
Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.
Close