Transum Software

Integration

Exercises on indefinite and definite integration of basic algebraic and trigonometric functions.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Exam-Style Description Help Differentiation

This is level 2 ?  Use the ^ key to type in a power or index and use the forward slash / to type a fraction. Press the right arrow key to end the power or fraction. Click the Help tab above for more.

Each of your answers should end with +c for the constant of integration.

\(\int 2x^2 \; \text{dx} \)

= Correct Wrong

\(\int 5x^3 \; \text{dx} \)

= Correct Wrong

\(\int 2x^5 \; \text{dx} \)

= Correct Wrong

\(\int 2x^3-5x \; \text{dx} \)

= Correct Wrong

\(\int 9x^4+x^2 \; \text{dx} \)

= Correct Wrong

\(\int 7x-35 \; \text{dx} \)

= Correct Wrong

\(\int \frac{5}{x^2} \; \text{dx} \)

= Correct Wrong

\(\int \frac{7}{x^3} \; \text{dx} \)

= Correct Wrong

\(\int -\frac{1}{x^4} \; \text{dx} \)

= Correct Wrong

Check

This is Integration level 2. You can also try:
Level 1 Level 3 Level 4 Level 5 Level 6

Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

Transum.org

This web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available.

Please contact me if you have any suggestions or questions.

Email address

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician?

Comment recorded on the 19 November 'Starter of the Day' page by Lesley Sewell, Ysgol Aberconwy, Wales:

"A Maths colleague introduced me to your web site and I love to use it. The questions are so varied I can use them with all of my classes, I even let year 13 have a go at some of them. I like being able to access Starters for the whole month so I can use favourites with classes I see at different times of the week. Thanks."

Comment recorded on the 1 August 'Starter of the Day' page by Peter Wright, St Joseph's College:

"Love using the Starter of the Day activities to get the students into Maths mode at the beginning of a lesson. Lots of interesting discussions and questions have arisen out of the activities.
Thanks for such a great resource!"

Each month a newsletter is published containing details of the new additions to the Transum website and a new puzzle of the month.

The newsletter is then duplicated as a podcast which is available on the major delivery networks. You can listen to the podcast while you are commuting, exercising or relaxing.

Transum breaking news is available on Twitter @Transum and if that's not enough there is also a Transum Facebook page.

Featured Activity

Newsletter

Newsletter

The Transum Newsletter for July 2020 has just been published. Click on the image above to read about the latest developments on this site and try to solve the puzzle of the month. You can read the newsletter online or listen to it by downloading the podcast.

Answers

There are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer.

A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves.

Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members.

If you would like to enjoy ad-free access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now:

Subscribe

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school.

Maths Map

Are you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic.

Teachers

If you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows:

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2020 WWW.TRANSUM.ORG

© Transum Mathematics :: This activity can be found online at:
www.Transum.org/go/?Num=800

Description of Levels

Close

Close

Level 1 - Indefinite integration of basic polynomials with integer coefficient solutions

Level 2 - Indefinite integration of basic polynomials with integer and fraction coefficient solutions

Level 3 - Definite integration of basic polynomials

Level 4 - Integration of expressions containing fractional indices

Level 5 - Integration of basic trigonometric, exponential and reciprocal functions

Level 6 - Integration of the composites of basic functions with the linear function ax + b

Exam Style Questions - A collection of problems in the style of GCSE or IB/A-level exam paper questions (worked solutions are available for Transum subscribers).

Differentiation - A multi-level set of exercises providing practice differentiating expressions

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

In General

$$\int ax^n \text{dx} = \frac{ax^{n+1}}{n+1}+c \quad \text{ for all } n \neq -1$$

Tutorial

The video above is from the wonderful HEGARTYMATHS

Mathematical Notation

Use the ^ key to type in a power or index then the right arrow or tab key to end the power.

For example: Type 3x^2 to get 3x2.


Use the forward slash / to type a fraction then the right arrow or tab key to end the fraction.

For example: Type 1/2 to get ½.

Fractions should be given in their lowest terms.

Answers to definite integral questions should be given as exact fractions or to three significant figures if the decimal answer does not terminate.


Special Functions

$$\int e^x \; \text{dx} = e^x + c$$ $$\int \frac1x \; \text{dx} = \ln x + c$$ $$\int \cos x \; \text{dx} = \sin x + c$$ $$\int \sin x \; \text{dx} = -\cos x + c$$

Composite Functions

$$\int e^{ax+b} \; \text{dx} = \frac1a e^{ax+b} + c$$ $$\int (ax+b)^n \; \text{dx} = \frac1a \frac{(ax+b)^{n+1}}{n+1} + c \text{,} \quad (n \neq -1)$$ $$\int \frac{1}{ax+b}\; \text{dx} = \frac1a \ln (ax+b)+ c \text{,} \quad (ax+b \gt 0)$$ $$\int \cos (ax+b) \; \text{dx} = \frac1a \sin (ax+b) + c$$ $$\int \sin (ax+b) \; \text{dx} = - \frac1a \cos (ax+b) + c$$

The following identities may also prove useful:

$$\sin^2x = \frac{1}{2} - \frac{1}{2} \cos 2x \text{ and } \cos^2x = \frac{1}{2} + \frac{1}{2} \cos 2x$$

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly. You can double-click the 'Check' button to make it float at the bottom of your screen.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Close

Close