Transum Software

Exam-Style Questions on Kinematics

Problems on Kinematics adapted from questions set in previous exams.

1.

GCSE Higher

Strat drove from Wolverhampton to London via Coventry.

(a) Work out Strat's average speed for his total drive from Wolverhampton to London.

Raven drove from Bedrock to Springfield via South Park.

Raven says that the average speed from Bedrock to Springfield can be found by working out the mean of 70 km/h and 50 km/h.

(b) If Raven is correct, what does this tell you about the two parts of Raven's journey?


2.

GCSE Higher

The following diagram shows a distance-time graph of the movement of a fish.

Distance Time Graph

(a) Work out the average speed between 10 and 20 seconds.

(b) Estimate the speed of the fish at 25 seconds.


3.

GCSE Higher

Marilou and Sam had a skiing race. Here is Marilou’s speed-time graph from the start of the race.

Travel Graph

(a) Marilou crossed the finishing line after a time of 40 seconds. How long was the race?

(b) Sam finished after a time of 50 seconds. What was his average speed, in kilometres per hour, for the race?


4.

GCSE Higher

A model train is placed on a length of straight track.

(a) Draw a velocity-time graph for the train on graph paper provided below.

Velocity Time Graph

(b) Work out the total distance travelled by the model train.


5.

IB Standard

Pob and Wie are travelling from Bangkok to Khon Kaen.

Pob travels at a velocity given by \(V_P=50-t^2\), where t is in seconds and the velocity is in ms-1.

Wie's displacement from Bangkok in metres is given by \(S_W=2t^2+70\).

When \(t=0\), both vehicles are at the same point.

Find Pob's displacement from Bangkok when \(t=5\).


6.

GCSE Higher

Here is a speed-time graph for a go kart.

Speed Time Graph

Work out an estimate for the distance the kart travelled in the first 12 seconds by using six strips of equal width.


7.

IB Standard

The acceleration, \(a\) ms-2 , of an object at time \(t\) seconds is given by

$$a=\frac1t+4sin3t, (t\ge1)$$

The object is at rest when \(t=1\).

Find the velocity of the object when \(t=7\).


8.

IB Standard

Very accurate equipment was used to measure the movement of a particle which moved in a straight line for 3 seconds. Its velocity, \(v\) ms-1 , at time \(t\) seconds, is given by:

$$v=(t^2-5)^3$$

(a) Find the velocity of the particle when \(t=2\).

(b) Find the value of t for which the particle is at rest.

(c) Find the total distance the particle travels during the first three seconds.

(d) Show that the acceleration of the particle is given by \(a=6t(t^2-5)^2\)

(e) Find all possible values of t for which the velocity and acceleration are both positive or both negative.


The exam-style questions appearing on this site are based on those set in previous examinations (or sample assessment papers for future examinations) by the major examination boards. The wording, diagrams and figures used in these questions have been changed from the originals so that students can have fresh, relevant problem solving practice even if they have previously worked through the related exam paper.

The solutions to the questions on this website are only available to those who have a Transum Subscription.

 

Exam-Style Questions Main Page

 

Search for exam-style questions containing a particular word or phrase:

To search the entire Transum website use the search box in the grey area below.

Comments:

Kausar Begum Khan, Kenya

Friday, January 26, 2018

"This is a fabulous website! I cannot thank you enough."

Aruna Upadhyayula, Bahrain

Tuesday, November 6, 2018

"Transum is so resourceful. The resources are so child-friendly that my students love its usage.It has a wide range of topics and caters to most of my needs. 'Thankyou" will be too small a word to express my gratitude to the content developers of this site."

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2018 WWW.TRANSUM.ORG