Transum Software

Exam-Style Questions.

Problems adapted from questions set for previous Mathematics exams.


IB Studies

A function is given as \(f(x)=3x^2-6x+4+\frac3x,-2\le x \le 4, x\ne 0\).

(a) Find the derivative of the function.

(b) Find the coordinates of the local minimum point of \(f(x)\) in the given domain using your calculator.


IB Studies

Consider the graph of the function \(f(x)=7-3x^2-x^3\)

(a) Label the local maximum as A on the graph.

(b) Label the local minimum as B on the graph.

(c) Write down the interval where \(f(x)>5\).

(d) Draw the tangent to the curve at \(x=-3\) on the graph.

(e) Write down the equation of the tangent at \(x=-3\).


IB Studies

A package is in the shape of a cuboid and has a length \(l\) cm, width \(w\) cm and height of 12 cm.

(a) Express the volume of the package in terms of \(l\) and \(w\).

The total volume of the package is 2400 cm3.

(b) Show that \(l=\frac{200}{w}\).

The package is tied up using a length of red string that fits exactly around the package in two different directions, as shown in the following diagram (not to scale).


(c) Show that the length of string, \(x\)cm, required to tie up the package can be written as \(24+4w+\frac{400}{w}\)

(d) Sketch the graph of \(x\) for \(0\lt w \le 12\), clearly showing the local minimum point.

(e) Find \(\frac{dx}{dw}\).

(f) Find the value of \(w\) for which \(x\) is a minimum.

(g) Find the value, \(l\), of the package for which the length of string is a minimum.

(h) Find the minimum length of string required to tie up the package.


IB Studies

Consider the function \(f(x)=x^3-9x+2\).

(a) Sketch the graph of \(y=f(x)\) for \(-4\le x\le 4\) and \(-14\le y\le 14\) showing clearly the axes intercepts and local maximum and minimum points. Use a scale of 2 cm to represent 1 unit on the x-axis, and a scale of 1 cm to represent 2 units on the y-axis.

(b) Find the value of \(f(-1)\).

(c) Write down the coordinates of the y-intercept of the graph of \(f(x)\).

(d) Find \(f'(x)\).

(e) Find \(f'(-1)\)

(f) Explain what \(f'(-1)\) represents.

(g) Find the equation of the tangent to the graph of \(f(x)\) at the point where x is –1.

R and S are points on the curve such that the tangents to the curve at these points are horizontal. The x-coordinate of R is \(a\) , and the x-coordinate of S is \(b\) , \(b \gt a\).

(h) Write down the value of \(a\) ;

(i) Write down the value of \(b\).

(j) Describe the behaviour of \(f(x)\) for \(a \lt x \lt b\).


IB Standard

Let \(f(x)=jx^3+jx^2+kx+m\) where \(j, k\) and \(m\) are constants.

(a) Find \(f'(x)\)

(b) If \(f'(x)\ge 0\), show that \(j^2\le 3jk\).



The following equation defines a curve which passes through \( A( 2 \pi ,3 \pi)\)

$$ \sin 2y + y \cos^22x = x + c $$

(a) Find the exact value of the constant \( c \).

(b) Find an expression for \( \frac{dy}{dx} \)

(c) Find the equation of the normal to the curve at A, giving your answer in the form \(y = mx + b \)

If you would like space on the right of the question to write out the solution try this Thinning Feature. It will collapse the text into the left half of your screen but large diagrams will remain unchanged.

The exam-style questions appearing on this site are based on those set in previous examinations (or sample assessment papers for future examinations) by the major examination boards. The wording, diagrams and figures used in these questions have been changed from the originals so that students can have fresh, relevant problem solving practice even if they have previously worked through the related exam paper.

The solutions to the questions on this website are only available to those who have a Transum Subscription.


Exam-Style Questions Main Page


Search for exam-style questions containing a particular word or phrase:

To search the entire Transum website use the search box in the grey area below.


Do you have any comments about these exam-style questions? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.


©1997-2024 WWW.TRANSUM.ORG