## Exam-Style Questions on Modelling## Problems on Modelling adapted from questions set in previous Mathematics exams. |

## 1. | IB Applications and Interpretation |

In a fantasy story the power value of a dream catcher varies depending on its length. The power values of various dream catchers are recorded in the following table:

Length, \(x\) cm | 0 | 10 | 15 |

Power, \(p\) W | 0 | 12 | 22 |

This information was used to create Model A, where \(p\) is a function of \(x\) , \(x \ge 0\).

Model A: \(p(x) = ax^2 + bx\) , where \(a,b \in \mathbb{Z}\).

When the length is 10 cm, Model A can be represented by the equation 50a + 5b = 6.

(a) Write down a second equation to represent Model A, when the length is 15cm.

(b) Find the values of a and b.

(c) Find the coordinates of the vertex of the graph of \(y = p(x)\).

(d) Using the values in the table and your answer to part (c), sketch the graph of \(y = p(x)\) for \(0 \le x \le 15\) and \(0 \le p \le 22\).

Additional data was used to create Model B, a revised model for the power of a dream catcher.

Model B: \(p(x) = 0.06x^2 + 0.68x\)

(e) Use Model B to calculate an estimate for the power of a dream catcher of length 18cm.

The actual power of a dream catcher of length 18cm is 30 W.

(f) Calculate the percentage error in the estimate in part (e).

If you would like space on the right of the question to write out the solution try this Thinning Feature. It will collapse the text into the left half of your screen but large diagrams will remain unchanged.

The exam-style questions appearing on this site are based on those set in previous examinations (or sample assessment papers for future examinations) by the major examination boards. The wording, diagrams and figures used in these questions have been changed from the originals so that students can have fresh, relevant problem solving practice even if they have previously worked through the related exam paper.

The solutions to the questions on this website are only available to those who have a Transum Subscription.

Exam-Style Questions Main Page

To search the **entire Transum website** use the search box in the grey area below.

Do you have any comments about these exam-style questions? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.