Angle ChaseUse knowledge and reasoning to fill in the angles on the geometrical diagrams drawn inside rectangles. 
This is Angle Chase level 3. You can also try:
Theorems
Triangles
Points
Parallels
Chase 1
Chase 2
Chase 4
InstructionsTry your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help. When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file. 



Transum.orgThis web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available. Please contact me if you have any suggestions or questions. 
More Activities: 

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician? Comment recorded on the 12 July 'Starter of the Day' page by Miss J Key, Farlingaye High School, Suffolk: "Thanks very much for this one. We developed it into a whole lesson and I borrowed some hats from the drama department to add to the fun!" Comment recorded on the 1 February 'Starter of the Day' page by Terry Shaw, Beaulieu Convent School: "Really good site. Lots of good ideas for starters. Use it most of the time in KS3." 


AnswersThere are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer. A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves. Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members. If you would like to enjoy adfree access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now: Subscribe 

Go MathsLearning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school. Maths MapAre you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic. TeachersIf you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows: 

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments. 
© Transum Mathematics :: This activity can be found online at:
www.transum.org/Maths/Activity/Angle/Chase.asp?Level=3
Close
Level 1  31 angles to be found in a diagram with one set of parallel lines
Level 2  42 angles to be found in a diagram with three sets of parallel lines
Level 3  69 angles to be found in a fiendishly complex diagram
Level 4  Impossible unless you know the circle angle theorems
Exam Style questions are in the style of GCSE or IB/Alevel exam paper questions and worked solutions are available for Transum subscribers.
More on this topic including lesson Starters, visual aids and investigations.
Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.
See the National Curriculum page for links to related online activities and resources.
Click on a picture above for a large version, theorem description and interactive model.
If you are on level 4 you will also need the Circle Theorems.
Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.
Close
Heather Scott, Twitter
Sunday, October 8, 2017
John Tranter, Transum
Friday, October 13, 2017
"I wrote this activity for a friend's daughter who was struggling to see the angle relationships in her school homework. I presented it to her as this selfchecking digital version because if she tried the more traditional paper versions she would not get the immediate feedback the computer provides.
We did level one together. She typed in the answers in the web browser but had a laminated copy of the printed version in front of her to draw on (Great for seeing the Z shapes).
After Level 1, she was feeling more confident so we played Level 2 as a game, taking it in turns to figure out one of the angles. She was most confident with vertically opposite angles and angles in triangles. A blank sheet of paper to hide the unnecessary part of the diagram helped her spot the angles together on a straight line. At one point, using her own initiative, I found her looking in her school exercise book to remind herself about angles in quadrilaterals and pentagons.
This was one of those great teacher moments when you can see the understanding taking shape and the pride the student demonstrates when solving mathematical problems.
I hope this activity works as well for you. "
Shirley,
Tuesday, February 6, 2018
"Why are the corner angles 90? I can't see it.
[Transum: Very good question Shirley. You can't assume angles are exactly 90° just because they look like right angles. The clue here is in the text at the top of the page which says that the diagram is drawn inside a rectangle and the angles of a rectangle are 90°.]"