# Volume

## Use formulae to solve problems involving the volumes of cuboids, prisms and other common solids.

##### Level 1Level 2Level 3Level 4Level 5Level 6Exam-StyleDescriptionHelpMore...

This is level 2; use the width times height times length formula to find the volume of cuboids. You can earn a trophy if you get at least 7 questions correct and you do this activity online.

 1. Find the volume of the cuboid below if its width is 5cm, length is 8cm and height is 2cm. cm3 2. Find the volume of the cuboid below. cm3 3. Find the volume of the cuboid below. cm3 4. Each of the edges of the cube below are 5cm long. Find the volume of the cube. cm3 5. Find the volume of the cuboid below. cm3 6. Find the volume of the cuboid below. cm3 7. Find the volume of the cuboid below. mm3 8. Find the volume of the cuboid below. m3 9. Find the height of the cuboid below. Its volume is 80cm3 cm 10. These two cuboids have the same volume. Find the height of the red cuboid. cm
Check

This is Volume level 2. You can also try:
Level 1 Level 3 Level 4 Level 5 Level 6

## Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

## Transum.org

This web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available.

## More Activities:

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician?

Comment recorded on the 12 July 'Starter of the Day' page by Miss J Key, Farlingaye High School, Suffolk:

"Thanks very much for this one. We developed it into a whole lesson and I borrowed some hats from the drama department to add to the fun!"

Comment recorded on the 9 May 'Starter of the Day' page by Liz, Kuwait:

"I would like to thank you for the excellent resources which I used every day. My students would often turn up early to tackle the starter of the day as there were stamps for the first 5 finishers. We also had a lot of fun with the fun maths. All in all your resources provoked discussion and the students had a lot of fun."

#### Lemon Law

A fascinating digit changing challenge. Change the numbers on the apples so that the number on the lemon is the given total. Can you figure out, by understanding place value, how this works?

There are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer.

A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves.

Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members.

Subscribe

## Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school.

## Maths Map

Are you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic.

## Teachers

If you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows:

Thursday, January 31, 2019

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

For Students:

For All:

© Transum Mathematics :: This activity can be found online at:
www.Transum.org/go/?Num=263

## Description of Levels

Close

Level 1 - A basic exercise to find the number of cubes required to make the cuboid shown in the diagram

Level 2 - Use the width times height times length formula to find the volume of cuboids

Level 3 - Find the volumes of a wide range of prisms (including cylinders)

Level 4 - Find the volumes of pyramids, cones, spheres and other common solid shapes

Level 5 - Find the volumes of composite solid objects

Level 6 - Find the volumes of solid objects where the units of the dimensions may differ

Surface Area - Exercises on finding the surface area of solids

Cylinders - Apply formulae for the volumes and surface areas of cylinders

Exam Style Questions - A collection of problems in the style of GCSE or IB/A-level exam paper questions (worked solutions are available for Transum subscribers).

More on this topic including lesson Starters, visual aids, investigations and self-marking exercises.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

## Curriculum Reference

See the National Curriculum page for links to related online activities and resources.

## Volume Formulas

Cube: $$s^3$$ where $$s$$ is the length of one edge.

Cuboid: $$l\times w\times h$$ where $$l$$ is the length, $$w$$ is the width and $$h$$ is the height of the cuboid.

Cylinder: $$h \times \pi r^2$$ where $$h$$ is the height (or length) of the cylinder and $$r$$ is the radius of the circular end.

Cone: $$h \times \frac13 \pi r^2$$ where $$h$$ is the height of the cone and $$r$$ is the radius of the circular base.

Square based pyramid: $$h \times \frac13 s^2$$ where $$h$$ is the height of the pyramid and s is the length of a side of the square base.

Sphere: $$\frac43 \pi r^3$$ where $$r$$ is the radius of the sphere.

Prism: Area of the cross section multiplied by the length of the prism.

###### Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly.

Close

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly. You can double-click the 'Check' button to make it float at the bottom of your screen.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Close