Comparing Cubes

Two Cubes

Volume = 8 cm3

Volume = 1728 mm3

DIAGRAM NOT TO SCALE

A Mathematics Lesson Starter Of The Day


Share

Topics: Starter | Roots

  • Transum,
  •  
  • There are a number of concepts involved in this problem. The one most students find quite difficult to understand is converting cubic millimetres to cubic centimetres (or vice versa). Finding the cube root of a number is also challenge to most pupils. This is probably a starter that will require a certain amount of guidance, help and support from the teacher but once the method has been established refresh this page to get the same problem with different numbers.
  • JD, WA
  •  
  • Students don't need to convert cubic mm to cubic cm. They can find the cube root of each and then they are converting mm to cm which is much easier!
    "If there is a better solution find it!" - Thomas Eddison.

    [Transum: Excellent observation JD. Thanks very much for sharing.]

How did you use this starter? Can you suggest how teachers could present or develop this resource? Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for Maths teachers anywhere in the world.
Click here to enter your comments.

If you don't have the time to provide feedback we'd really appreciate it if you could give this page a score! We are constantly improving and adding to these starters so it would be really helpful to know which ones are most useful. Simply click on a button below:

Excellent, I would like to see more like this
Good, achieved the results I required
Satisfactory
Didn't really capture the interest of the students
Not for me! I wouldn't use this type of activity.

This starter has scored a mean of 2.6 out of 5 based on 81 votes.


Previous Day | This starter is for 12 August | Next Day

 

Answers

Hint: If you don't have a calculator with a cube root function here are the keys
you would need to press to find the cube root of 1728:

1728^(1÷3)

This works because raising a number to the power one third is equivalent to finding the cube root of the number.

Note to teacher: Doing this activity once with a class helps students develop strategies. It is only when they do this activity a second time that they will have the opportunity to practise those strategies. That is when the learning is consolidated. Click the button above to regenerate another version of this starter from random numbers.



Your access to the majority of the Transum resources continues to be free but you can help support the continued growth of the website by doing your Amazon shopping using the links on this page. Below is an Amazon search box and some items chosen and recommended by Transum Mathematics to get you started.

Have you read Craig's book yet?

Craig Barton must surely be the voice of Mathematics teachers in the UK. His wonderful podcasts interviewing the industry experts have culminated in this wonderful book. As Craig says: "I genuinely believe I have never taught mathematics better, and my students have never learned more. I just wish I had known all of this twelve years ago..." more...

"How I wish I’d taught maths' is an extraordinary and important book. Part guide to research, part memoir, part survival handbook, it’s a wonderfully accessible guide to the latest research on teaching mathematics, presented in a disarmingly honest and readable way. I know of no other book that presents as much usable research evidence on the dos and don’ts of mathematics teaching in such a clear and practical way. No matter how long you have been doing it, if you teach mathematics—from primary school to university—this book is for you." Dylan Wiliam, Emeritus Professor of Educational Assessment, UCL.

The Craig Barton Book

Graphic Display Calculator

This handheld device and companion software are designed to generate opportunities for classroom exploration and to promote greater understanding of core concepts in the mathematics and science classroom. TI-Nspire technology has been developed through sound classroom research which shows that "linked multiple representation are crucial in development of conceptual understanding and it is feasible only through use of a technology such as TI-Nspire, which provides simultaneous, dynamically linked representations of graphs, equations, data, and verbal explanations, such that a change in one representation is immediately reflected in the others.

For the young people in your life it is a great investment. Bought as a gift for a special occasion but useful for many years to come as the young person turns into an A-level candidate then works their way through university. more...

iPad Air

The analytics show that more and more people are accessing Transum Mathematics via an iPad as it is so portable and responsive. The iPad has so many other uses in addition to solving Transum's puzzles and challenges and it would make an excellent gift for anyone.

You have to hold iPad Air to believe it. It’s just 7.5 millimeters thin and weighs just one pound. The stunning Retina display sits inside thinner bezels, so all you see is your content. And an incredible amount of power lies inside the sleek enclosure. So you can do so much more. With so much less. more...

Before giving an iPad as a gift you could add a link to iPad Maths to the home screen.

Click the images above to see all the details of these items and to buy them online.

Online Maths Shop

Laptops In Lessons

Teacher, do your students have access to computers?
Do they have iPads or Laptops in Lessons?

Whether your students each have a TabletPC, a Surface or a Mac, this activity lends itself to eLearning (Engaged Learning).

Laptops In Lessons

Here a concise URL for a version of this page without the comments.

Transum.org/go/?Start=August12

Here is the URL which will take them to a self marking quiz about volume.

Transum.org/go/?to=Volume

Student Activity

 


Interesting fact for the Teacher!

There is a simple method to compute the cube roots using a non-scientific calculator, which requires only the multiplication and square root buttons. No memory is required. The following method is used:

This process is continued until the number does not change when the multiplication button is pressed, since the repeated square root gives 1 (this means that the solution has been determined to as many significant digits as the calculator can handle). Then, press the square root button one last time. At this point an approximation of the cube root of the original number will be shown in the display.

A full explanation of why this works can be found onWikipedia, the free online encyclopedia.

Apple

©1997-2018 WWW.TRANSUM.ORG