Transum Software

Pythagoras Basics 3

A self marking exercise on the application of Pythagoras' Theorem.

Level 1 Level 2 Level 3 Level 4 Level 5 Description Help More on Pythagoras

Calculate the length of the third side of these right angled triangles. The diagrams are not to scale. Give your answer correct to 1 decimal place.

6.9cm

9.7cm

cm Correct Wrong

7cm

12.0cm

cm Correct Wrong

8cm

12.7cm

cm Correct Wrong

8.2cm

12.2cm

cm Correct Wrong

8.3cm

10.4cm

cm Correct Wrong

8.7cm

12.4cm

cm Correct Wrong

7.1cm

10.9cm

cm Correct Wrong

7.6cm

9.7cm

cm Correct Wrong

8cm

10.3cm

cm Correct Wrong

7.6cm

8.2cm

cm Correct Wrong

6.2cm

11.3cm

cm Correct Wrong

7.4cm

6.5cm

cm Correct Wrong
Check

This is Pythagoras Basics 3 level 3. You can also try:
Level 1 Level 2 Level 4 Level 5

Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

Transum.org

This web site contains hundreds of free mathematical activities for teachers and students. Click here to go to the main page which links to all of the resources available.

Please contact us if you have any suggestions or Questions.

Email address

More Activities:

Comment recorded on the 6 May 'Starter of the Day' page by Natalie, London:

"I am thankful for providing such wonderful starters. They are of immence help and the students enjoy them very much. These starters have saved my time and have made my lessons enjoyable."

Comment recorded on the 8 May 'Starter of the Day' page by Mr Smith, West Sussex, UK:

"I am an NQT and have only just discovered this website. I nearly wet my pants with joy.
To the creator of this website and all of those teachers who have contributed to it, I would like to say a big THANK YOU!!! :)."

Featured Activity

Spinsum

Spinsum

Arrange the numbers on the squares so that the totals along each line of three squares are equal. There are five levels of difficulty and the fifth level is very hard. Transum trophies are available.

Answers

There are answers to this exercise but they are only available to teachers who have subscribed to Transum and are currently signed in on this computer.

A Transum subscription unlocks the answers to most of the student online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum topic pages so that teachers can easily find the excellent resources we have found and add to the collection themselves.

Class lists, lesson plans and assessment data can also be stored in the Class Admin application and the teacher also has access to the Transum Trophies earned by class members.

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. Click here for more activities designed for students in upper Secondary/High school.

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2015 WWW.TRANSUM.ORG

Description of Levels

Close

Close

Level 1 - Finding the hypotenuse

Level 2 - Finding a shorter side

Level 3 - Mixed questions

Level 4 - Pythagoras Theorem quiz

Level 5 - Three dimensional Pythagoras and Trigonometry

Pythagoras' Theorem

To find the longest side (hypotenuse) of a right-angled triangle you square the two shorter sides, add together the results and then find the square root of this total.

To find a shorter side of a right-angled triangle you subtract the square of the other shorter side from the square of the hypotenuse and then find the square root of the answer.

Example

Pythagoras Example

AB2 = AC2 - BC2
AB2 = 4.72 - 4.12
AB2 = 22.09 - 16.81
AB2 = 5.28
AB = √5.28
AB = 2.3m (to one decimal place)

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly.

Close

Close