Transum Software

Pythagoras Basics 3

A self marking exercise on the application of Pythagoras' Theorem.

Level 1 Level 2 Level 3 Level 4 Level 5 Description Help More on Pythagoras

Calculate the length of the third side of these right angled triangles. The diagrams are not to scale. Give your answer correct to 1 decimal place.

8.1cm

10.6cm

cm Correct Wrong

8.5cm

9.7cm

cm Correct Wrong

6.1cm

11.3cm

cm Correct Wrong

6.5cm

10.2cm

cm Correct Wrong

9.9cm

8.1cm

cm Correct Wrong

9.6cm

8.6cm

cm Correct Wrong

7.4cm

10.4cm

cm Correct Wrong

8.7cm

9.8cm

cm Correct Wrong

9.7cm

11.5cm

cm Correct Wrong

7.5cm

8.9cm

cm Correct Wrong

7.6cm

7.1cm

cm Correct Wrong

7.2cm

11.0cm

cm Correct Wrong
Check

This is Pythagoras Basics 3 level 3. You can also try:
Level 1 Level 2 Level 4 Level 5

Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

Transum.org

This web site contains hundreds of free mathematical activities for teachers and students. Click here to go to the main page which links to all of the resources available.

Please contact us if you have any suggestions or Questions.

Email address

More Activities:

Comment recorded on the 19 October 'Starter of the Day' page by E Pollard, Huddersfield:

"I used this with my bottom set in year 9. To engage them I used their name and favorite football team (or pop group) instead of the school name. For homework, I asked each student to find a definition for the key words they had been given (once they had fun trying to guess the answer) and they presented their findings to the rest of the class the following day. They felt really special because the key words came from their own personal information."

Comment recorded on the 28 May 'Starter of the Day' page by L Smith, Colwyn Bay:

"An absolutely brilliant resource. Only recently been discovered but is used daily with all my classes. It is particularly useful when things can be saved for further use. Thank you!"

Featured Activity

Strategy Games

Strategy Games

We have collected together lots of strategy games for you to enjoy. Many of them have mathematical principles involved in their design so would make a good activity for a Mathematics lesson.

Answers

There are answers to this exercise but they are only available to teachers who have subscribed to Transum and are currently signed in on this computer.

A Transum subscription unlocks the answers to most of the student online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum topic pages so that teachers can easily find the excellent resources we have found and add to the collection themselves.

Class lists, lesson plans and assessment data can also be stored in the Class Admin application and the teacher also has access to the Transum Trophies earned by class members.

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. Click here for more activities designed for students in upper Secondary/High school.

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2015 WWW.TRANSUM.ORG

Description of Levels

Close

Close

Level 1 - Finding the hypotenuse

Level 2 - Finding a shorter side

Level 3 - Mixed questions

Level 4 - Pythagoras Theorem quiz

Level 5 - Three dimensional Pythagoras and Trigonometry

Pythagoras' Theorem

To find the longest side (hypotenuse) of a right-angled triangle you square the two shorter sides, add together the results and then find the square root of this total.

To find a shorter side of a right-angled triangle you subtract the square of the other shorter side from the square of the hypotenuse and then find the square root of the answer.

Example

Pythagoras Example

AB2 = AC2 - BC2
AB2 = 4.72 - 4.12
AB2 = 22.09 - 16.81
AB2 = 5.28
AB = √5.28
AB = 2.3m (to one decimal place)

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly.

Close

Close