Number Systems

\(\mathbb N\): The set of natural or counting numbers 0, 1, 2, 3, etc. Some say this set does not include zero.

\(\mathbb Z\): The set of integers. This set is the same as the set of natural numbers but includes the negative whole numbers.

\(\mathbb Q\): The set of rational numbers. These are the numbers that can be expressed as a proper fraction or one integer divided by another.

\(\mathbb R\): The set of real numbers. That is probably all the numbers you know unless you have studied the topic of Complex Numbers.

Hide/Show
$$\mathbb R$$
$$\mathbb Q$$
$$\mathbb Z$$
$$\mathbb N$$
\(\text{one million}\)
\(\frac34\)
\(\cos 40^o\)
\(\pi\)
\(\sin 30^o\)
\(-\sqrt9\)
\(\frac{57}{9}\)
\(\frac23\)
\(\sqrt2\)
\(1.\dot4\dot2\)
\(\frac12\div\frac12\)
\(7\)
\(-2.479315...\)
\(1.3\)
\(1\div6\)
Featured Activity

Lemon Law

Lemon Law

A fascinating digit changing challenge. Change the numbers on the apples so that the number on the lemon is the given total. Can you figure out, by understanding place value, how this works?

Check

Drag the numbers into the correct sets as shown in the Venn diagram above. When you have finished click on the 'Check' button above.

There is a solution and ad-free version of this activity available to those who have a Transum Subscription.

There are other related activities on the Transum Mathematics website to support your understanding of number.

Venn Diagram Sieve of Eratosthenes Satisfaction Recurring Decimals Number
Recently Updated

Arithmetic Sequences

Arithmetic Sequences

An exercise on linear sequences including finding an expression for the nth term and the sum of n terms. So far this activity has been accessed 11301 times and 2145 people have earned a Transum Trophy for completing it.

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2018 WWW.TRANSUM.ORG