Transum Software

Recurring Decimals

Change recurring decimals into their corresponding fractions and vica versa.

Level 1 Level 2 Exam-Style Help More Decimals

Do not use a calculator. You can earn a trophy if you get at least 9 questions correct and you do this activity online.

1. Convert the recurring decimal \(0.\dot 3\) to a fraction in its simplest form.

Working:

Correct Wrong

2. Convert the recurring decimal \(0.\dot 4\) to a fraction in its simplest form.

Working:

Correct Wrong

3. Convert the recurring decimal \(0.\dot 8\) to a fraction in its simplest form.

Working:

Correct Wrong

4. The decimal \(0.\dot 8\dot 1\) has a period of length two. Convert it to a fraction in its simplest form.

Working:

Correct Wrong

5. The decimal \(0.\dot 5\dot 4\) also has a period of length two. Convert it to a fraction in its simplest form.

Working:

Correct Wrong

6. Convert the recurring decimal \(0.1\dot 6\) to a fraction in its simplest form.

Working:

Correct Wrong

7. Convert the recurring decimal \(0.08\dot 3\) to a fraction in its simplest form.

Working:

Correct Wrong

8. The decimal \(0.0\dot 4\dot 5\) has a period of length two. Convert it to a fraction in its simplest form.

Working:

Correct Wrong

9. Calculate \(2 \times \) \(0.\dot 4\dot 5\) giving your answer as a fraction in its lowest terms.

Working:

Correct Wrong

10. Calculate \(1.5 \times \) \(0.\dot 4\dot 5\) giving your answer as a fraction in its lowest terms.

Working:

Correct Wrong

11. Calculate (\(0.58\dot 3\))2 giving your answer as a fraction in its lowest terms.

Working:

Correct Wrong

12. Calculate \( \sqrt{0.\dot 4}\) giving your answer as a fraction in its lowest terms.

Working:

Correct Wrong

Check

This is Recurring Decimals level 2. You can also try:
Level 1

Instructions

Try your best to answer the questions above. Type your answers into the boxes provided leaving no spaces. As you work through the exercise regularly click the "check" button. If you have any wrong answers, do your best to do corrections but if there is anything you don't understand, please ask your teacher for help.

When you have got all of the questions correct you may want to print out this page and paste it into your exercise book. If you keep your work in an ePortfolio you could take a screen shot of your answers and paste that into your Maths file.

Transum.org

This web site contains over a thousand free mathematical activities for teachers and pupils. Click here to go to the main page which links to all of the resources available.

Please contact me if you have any suggestions or questions.

Email address

Mathematicians are not the people who find Maths easy; they are the people who enjoy how mystifying, puzzling and hard it is. Are you a mathematician?

Comment recorded on the 12 July 'Starter of the Day' page by Miss J Key, Farlingaye High School, Suffolk:

"Thanks very much for this one. We developed it into a whole lesson and I borrowed some hats from the drama department to add to the fun!"

Comment recorded on the 1 August 'Starter of the Day' page by Peter Wright, St Joseph's College:

"Love using the Starter of the Day activities to get the students into Maths mode at the beginning of a lesson. Lots of interesting discussions and questions have arisen out of the activities.
Thanks for such a great resource!"

Featured Activity

Where's Wallaby?

Where's Wallaby?

Find the hidden wallaby using the clues revealed at the chosen coordinates. Not only is this a fun way to practise using coordinates it is also a great introduction to Pythagoras' theorem and loci.

Answers

There are answers to this exercise but they are available in this space to teachers, tutors and parents who have logged in to their Transum subscription on this computer.

A Transum subscription unlocks the answers to the online exercises, quizzes and puzzles. It also provides the teacher with access to quality external links on each of the Transum Topic pages and the facility to add to the collection themselves.

Subscribers can manage class lists, lesson plans and assessment data in the Class Admin application and have access to reports of the Transum Trophies earned by class members.

If you would like to enjoy ad-free access to the thousands of Transum resources, receive our monthly newsletter, unlock the printable worksheets and see our Maths Lesson Finishers then sign up for a subscription now:

Subscribe

Go Maths

Learning and understanding Mathematics, at every level, requires learner engagement. Mathematics is not a spectator sport. Sometimes traditional teaching fails to actively involve students. One way to address the problem is through the use of interactive activities and this web site provides many of those. The Go Maths page is an alphabetical list of free activities designed for students in Secondary/High school.

Maths Map

Are you looking for something specific? An exercise to supplement the topic you are studying at school at the moment perhaps. Navigate using our Maths Map to find exercises, puzzles and Maths lesson starters grouped by topic.

Teachers

If you found this activity useful don't forget to record it in your scheme of work or learning management system. The short URL, ready to be copied and pasted, is as follows:

Transum,

Wednesday, August 30, 2017

"Here's something to think about, discuss with your friends and share with your teacher:

What is the difference between \(0.\dot 9\) and one?
"

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2017 WWW.TRANSUM.ORG

Help

A decimal with a repeating digit (or set of digits) is called a recurring decimal.

For example \(0.77777777...\) is a recurring decimal and is called "nought point seven recurring"

\(9.247347347...\) is also a recurring decimal and is called "nine point two four seven recurring"

The period of a recurring decimal is the number of digits in the repeating section so for the second example above the period is three.

A more efficient way of writing out a recurring decimal is by only writing the repeating digit once but putting a dot over the first and last number in the repeating sequence. Another method is drawing a line over the repeating digit or digits.Here are some examples.

\(0.333333333... = 0.\dot 3 = 0.\overline 3\)

\(0.76531531531... = 0.76\dot 53\dot 1 = 0.76\overline{531}\)

A fraction can be converted to a decimal using long division; dividing the numerator by the denominator. If the decimal is recurring the repeating pattern of numbers will be spotted in the long division working. The following example shows the repeating patterns when converting \( \frac{7}{11} \) to a decimal:

Using long division to convert a fraction into a recurring decimal

There are two common methods for converting a recurring decimal to a fraction:

Method 1

1 repeating digit

Let the recurring decimal be represented by \(x\)

$$x = 0.8888888...$$

Multiply both sides by 10 (as there is one repeating digit)

$$10x = 8.8888888...$$

Subtract the first equation from the second

$$9x = 8$$ $$x = \frac{8}{9}$$

2 repeating digits

Let the recurring decimal be represented by \(x\)

$$x = 1.36363636...$$

Multiply both sides by 100 (as there are two repeating digits)

$$100x = 136.36363636...$$

Subtract the first equation from the second

$$99x = 135$$ $$x = \frac{135}{99}$$ $$x = \frac{15}{11}$$

3 repeating digits

The method is the same but multiply both sides by 1000.

Method 2

1 repeating digit

Example: convert \(0.8888888...\) to a fraction.

This method requires you to know that \(\frac19 = 0.1111111...\)

\(0.8888888...\) is exactly eight times \(0.1111111...\)

$$\therefore 0.8888888... = \frac{8}{9}$$

2 repeating digits

Example: convert \(0.45454545\) to a fraction in its lowest terms.

This method requires you to know that \(\frac{1}{99} = 0.01010101...\)

\(0.45454545...\) is exactly forty five times \(0.01010101...\)

$$\therefore 0.45454545... = \frac{45}{99}$$ $$0.45454545... = \frac{5}{11}$$

3 repeating digits

Example: convert \(0.\dot 61\dot 2\) to a fraction in its lowest terms.

This method requires you to know that \(\frac{1}{999} = 0.\dot 00\dot 1\)

\(0.\dot 61\dot 2\) is exactly six hundred and twelve times \(0.\dot 00\dot 1\)

$$\therefore 0.\dot 61\dot 2 = \frac{612}{999}$$ $$0.\dot 61\dot 2 = \frac{68}{111}$$

Don't wait until you have finished the exercise before you click on the 'Check' button. Click it often as you work through the questions to see if you are answering them correctly. You can double-click the 'Check' button to make it float at the bottom of your screen.

Answers to this exercise are available lower down this page when you are logged in to your Transum account. If you don’t yet have a Transum subscription one can be very quickly set up if you are a teacher, tutor or parent.

Log in Sign up

Close

Close