Three people enjoy a meal at a Thai restaurant. The waiter brings the bill for £30 so each person pays £10.
Later the chef realises that the bill should have only been £25 so he sends the waiter back to the table with £5. The waiter was not very good at Maths and could not figure out how to divide the £5 so he gave each person a £1 and kept £2 for himself.
So....the three people have paid £9 each for the meal.
3 x £9 = £27
The waiter kept £2
£27 + £2 = £29
What happened to the other pound? Does this make sense?
This activity is suitable for students of mathematics all around the world. Use the button below to change the currency symbol used to make it more relevant to your students. You may wish to choose an unfamiliar currency to extend your students' experience. 
Topics: Starter  Arithmetic  Money  Problem Solving  Puzzles
How did you use this starter? Can you suggest
how teachers could present or develop this resource? Do you have any comments? It is always useful to receive
feedback and helps make this free resource even more useful for Maths teachers anywhere in the world.
Click here to enter your comments.
If you don't have the time to provide feedback we'd really appreciate it if you could give this page a score! We are constantly improving and adding to these starters so it would be really helpful to know which ones are most useful. Simply click on a button below:
This starter has scored a mean of 3.8 out of 5 based on 166 votes.
Previous Day  This starter is for 19 June  Next Day
The final paragraph of the story should read:
The waiter kept £2
£27 − £2 = £25, the correct cost of the meal.
Here is a similar puzzle from Thailand: "You borrow money from your Dad (500 baht) and your Mom (500 baht) to buy a phone that costs 970 baht. You then you have 30 baht change from the shop so you return 10 baht to Dad and 10 baht to Mom and you keep 10 baht yourself. But 490 + 490 = 980 and the 10 baht that you keep totals 990 baht. Where is the missing 10 baht?"
Christmas Present Ideas
Seasonal, mathematicsrelated gifts chosen and recommended by Transum Mathematics
Teacher, do your students have
access to computers? 

Here is the URL for a concise version of this page without comments or answers.
Here is the URL which will take them to a related student activity.