Here is something from Transum Subscriber Ann that is really useful:

Level 4 Equivalent Fractions requires us to express fractions in their simplest forms.
"When I think of cancelling fractions, I always think of times tables and perhaps the divisibility rules. These are my preferred methods, but sometimes I struggle, particularly with the last question. Could we use a different method for these trickier fractions?

Look at the question 152/171

What's 171-152 ? 19 (a prime number)
If 152 and 171 have a non-trivial common factor, it must be 19. Let's check to see:

$$
152 \div 19=8 \quad 171 \div 19=9
$$

19 is a common factor and the simplified fraction is 8/9

Why does this work?

First some language. 2 is a common factor of 6 and 10 . We can also say that 6 and 10 are multiples of 2. In other words, 6 and 10 are both in the 2 times table.

Example One (continued from above)

If 152 and 171 have a common factor, then 152 and 171 must be in the same times table. Which one?

171 and 152 have a difference of 19 . This tells us that they might be consecutive multiples in the 19 times tables. In that case, they would have a common factor of 19.

Could they have another common factor? 19 is a prime number, so we either have one jump of 19 or nineteen jumps of 1 . There are no other options.

All pairs of integers have the trivial common factor of one (the jumps of one shown above). We now check to see whether 19 is a common factor of 152 and 171.

Example Two

Let's try that again. Let's take the question 37/44
44-37 = 7 (a prime number)
If 37 and 44 have a non-trivial common factor, it must be 7 . Let's check to see:
$37 \div 7=5$ remainder 2
$44 \div 7=6$ remainder 2
7 is not a common factor.
Therefore, the only common factor is one. This means that $37 / 44$ is already in its simplest form.

Disclaimer

This is a method of "last resort" when the common factor isn't obvious.
It works well if the difference is prime.
It's sometimes useful when the difference isn't prime:

Example

Let's look at the question 91/105
What's 105-91? It's 14 (NOT a prime number, so there will be more factors to consider)
What are the factors of 14 ? These are $1,2,7$ and 14
91 and 105 must be in the same times table if they have a common factor. Which one?
Is that one jump of 14 between the numbers? so the 14 times table?
Or two jumps of 7 between them? so the 7 times table?
Or seven jumps of 2 between them? so the 2 times table?
We can quickly eliminate the 14 times table and the 2 times table as 91 and 105 are not even. We now check to see whether 7 is a common factor of 91 and 105 . Yes it is.
$91 \div 7=13$
$105 \div 7=15$
Our fraction simplifies to $13 / 15$.

