Transum Software

Exam-Style Questions on Statistics

Problems on Statistics adapted from questions set in previous exams.

1.

GCSE Higher

Ben measured the length and the width of each of 10 sea shells of the same type. The results are shown below.

(a) Construct a scatter graph with this data.

Shells

Sea Shell Dimensions
Length(cm) Width(cm)
7.3 2.7
9.7 3.2
7.5 2.6
6.1 2.9
9.0 2.9
8.7 3.0
7.5 2.5
10.3 3.5
9.5 3.3

The point representing the results for one of the shells is an outlier.

(b) Explain how the results for this shell differ from the results for the other shells.


2.

GCSE Higher

A survey is carried out by asking people questions as they come out of a coffee bar.

A section of the questionnaire is shown below.

Put a tick ☑ into the box in front of your chosen answer.

1. How often do you visit a coffee bar?

☐ Every day; ☐ Once or twice each week; ☐ Never.

2. What is your gender?

☐ Female; ☐ Male.

3. What is your age group?

☐ Under 10; ☐ 10-20; ☐ 20-30; ☐ 31-40.

(a) Explain why this is a biased survey.

(b) State two criticisms of the questions or the options given for answers.


3.

IGCSE Extended
Histogram

155 people were asked how much money they would pay for particular three-course meal in a special restaurant.

The histogram shows the results of the survey.

(a) Complete the frequency table for information shown in the histogram.

Amount (£\(x\))\(0\lt x \le 10\)
Frequency 20

(b) Use your frequency table to calculate an estimate of the mean amount these people would pay for the meal.


4.

GCSE Higher

The scatter graph gives information about the marks earned in a Statistic exam and a Mathematics exam by each of 13 students.

Scatter Graph

The box plot for the Mathematics exam for the 13 students is drawn on the grid below.

Box and Whisker

(a) Draw the box plot for the Statistics exam.

(b) Compare the distributions of marks scored in the two exams.


5.

GCSE Higher

The table shows the marks earned by 200 students taking a Maths exam.

Mark (n) \(0\lt n \le 10\) \(10\lt n \le 20\) \(20\lt n \le 30\) \(30\lt n \le 40\) \(40\lt n \le 50\) \(50\lt n \le 60\) \(60\lt n \le 70\) \(70\lt n \le 80\)
Frequency 3 7 33 42 54 35 20 6

(a) Use the data in the table above to complete the following cumulative frequency table

Mark (n) \(n \le 10\) \(n \le 20\) \(n \le 30\) \(n \le 40\) \(n \le 50\) \(n \le 60\) \(n \le 70\) \(n \le 80\)
Cumulative Frequency               200

(b) Draw the cumulative frequency curve on graph paper.

The top 5% of students will receive an A grade. The next 15% of students will receive a B grade and the next 30% will receive a C grade.

(c) Use your graph to estimate the lowest mark that B grade will be awarded for.


6.

GCSE Higher

The table shows the amount of time, in months, taken to sell houses on the Happyland housing estate.

Time (m months) Frequency
0 < m ≤ 2 10
2 < m ≤ 5 21
5 < m ≤ 10 25
10 < m ≤ 15 20
15 < m ≤ 20 25

(a) Draw a histogram for the information in the table.

(b) Find an estimate for the median.


7.

IB Studies

The following grouped frequency table shows the length of time, \(t\), in minutes, visitors watched an octopus swimming around a tank at an aquarium.

Time (\(t\))Visitors
\(0\lt t \le 5\)23
\(5\lt t \le 10\)13
\(10\lt t \le 15\)9
\(15\lt t \le 20\)6
\(20\lt t \le 25\)2
\(25\lt t \le 30\)1

(a) Write down the total number of visitors who were included in the survey.

(b) Write down the mid-interval value for the \(20\lt t \le 25\) group.

(c) Find an estimate of the mean time visitors took watching the octopus.

The information above has been rewritten as a cumulative frequency table.

Time (\(t\))\(t \le 5\)\(t \le 10\)\(t \le 15\)\(t \le 20\)\(t \le 25\)\(t \le 30\)
Cumulative frequency2336\(a\)5153\(b\)

(d) Write down the values of \(a\) and \(b\).

This information is shown in the following cumulative frequency graph.

Cumulative Frequency Graph

(e) Use the graph to estimate the maximum time taken watching the octopus for the first 32 visitors (arranged in order of increasing viewing time).

(f) Use the graph to estimate the number of visitors who spent less than 13 minutes watching the octopus.

(g) Use the graph to estimate the number of visitors who take more than 17 minutes watching the octopus.


8.

GCSE Higher

The charts below show the results of pupils in a Year Group answering twenty mental arithmetic questions.

Histograms

What information from the diagrams can be used to support or counter each of these statements?

(a) Girls are better at mental arithmetic than boys.

(b) The range of the boys' times is greater than the range of the girls' times.

The Head of the school would like to use this data to make statements about all of the pupils in the school.

(c) Comment on whether any conclusions can be drawn for the whole school population from the results of this Year Group.


9.

GCSE Higher

The following table shows the number of times people in a sample group visited the cinema in a six month period.

One of the frequencies is missing.

Cinema Visits Frequency Midpoint                    
0-4 20 2  
5-9 24 7  
10-14   12  
15-19 7 17  

Midpoints are used to work out an estimate for the mean number of visits.

The mean is calculated to be 7.25.

Work out the missing frequency.


10.

IB Standard

The personal trainer collected data from a randomly selected sample of days. From this he found that the number glasses of water he drank in a day had a mean of 4.35.

Glasses1234567
Frequency2469\(x\)94

(a) Find the number of days represented by \(x\)

(b) Write down the standard deviation.


11.

IB Standard
DaysFrequencyCumulative frequency
233
51114
71529
10\(x\)39
14544

(a) Find the value of \(x\).

(b) Find the mean.

(c) Find the variance.


12.

IB Studies

The times taken in seconds by a group of students to complete an online exercise are listed as follows.

$$31, 34, 41, 33, 29, 31, 39, 35, 30, 40.$$

(a) Find the median time.

(b) Calculate the interquartile range.

(c) Find the probability that a student chosen at random from the group took at least 35 seconds to completed the exercise.


13.

IB Studies
Cumulative Frequency Graph

This cumulative frequency graph shows the speeds in kmh-1 of cyclists passing a certain point on a race track.

(a) Estimate the minimum possible speed of one of these cyclists.

(b) Find the median speed of the cyclists.

(c) Write down the 65th percentile.

(d) Calculate the interquartile range.

(e) Find the number of these cyclists that were travelling faster than 22 kmh-1

The table shows the speeds of these cyclists.

Speed of Cyclists (s)Number of Cyclists
\(0 \lt s \le 5\)0
\(5 \lt s \le 10\)\(a\)
\(10 \lt s \le 15\)8
\(15 \lt s \le 20\)20
\(20 \lt s \le 25\)16
\(25 \lt s \le 30\)5
\(30 \lt s \le 35\)\(b\)

(f) Find the value of \(a\) and of \(b\)

(g) Write down the modal class.

(h) Write down the mid-interval value for the modal class.

(i) Use your graphic display calculator to calculate an estimate of the mean speed of these cyclists.

(j) Use your graphic display calculator to calculate an estimate of the standard deviation of the speeds of these cyclists.


The exam-style questions appearing on this site are based on those set in previous examinations (or sample assessment papers for future examinations) by the major examination boards. The wording, diagrams and figures used in these questions have been changed from the originals so that students can have fresh, relevant problem solving practice even if they have previously worked through the related exam paper.

The solutions to the questions on this website are only available to those who have a Transum Subscription.

 

Exam-Style Questions Main Page

 

Search for exam-style questions containing a particular word or phrase:

To search the entire Transum website use the search box in the grey area below.

Comments:

Do you have any comments? It is always useful to receive feedback and helps make this free resource even more useful for those learning Mathematics anywhere in the world. Click here to enter your comments.

Apple

©1997-2017 WWW.TRANSUM.ORG